等比数列〔an〕中,已知a1+a2+a3=6,a2+a3+a4=一3,则a3+a4+…+a8=?

问题描述:

等比数列〔an〕中,已知a1+a2+a3=6,a2+a3+a4=一3,则a3+a4+…+a8=?

a1+a2+a3=a1(1+q+q^2)=6a2+a3+a4=a2(1+q+q^2)=-3a2/a1=(-3)/6=-1/2q=-1/2a3+a4+a5+a6+a7+a8=a3(1+q+q^2)+a6(1+q+q^2)=a1q^2(1+q+q^2)+a1q^5(1+q+q^2)=a1(1+q+q^2)(q^2+q^5)=6*[(-1/2)^2+(-1/2)^5]=6*(1/4-1/32)=21/1...