把积分∫∫∫f(x,y,z)dxdydz化为三次积分,其中积分区域是由曲面z=x^2+y^2,y=x^2及平面y=1,z=0围成的闭区域
问题描述:
把积分∫∫∫f(x,y,z)dxdydz化为三次积分,其中积分区域是由曲面z=x^2+y^2,y=x^2及平面y=1,z=0围成的闭区域
答
原式=∫dx∫dy∫f(x,y,z)dz.
把积分∫∫∫f(x,y,z)dxdydz化为三次积分,其中积分区域是由曲面z=x^2+y^2,y=x^2及平面y=1,z=0围成的闭区域
原式=∫dx∫dy∫f(x,y,z)dz.