当x→e,求(lnx-1)/(x-e)
问题描述:
当x→e,求(lnx-1)/(x-e)
答
lim(x->e) (lnx-1)/(x-e) (0/0)= lim(x->e) (1/x)/1=1/e or expands lnx about elnx = lne +(x-e)/e + (x-e)^2/e^2+...= 1+(x-e)/e + (x-e)^2/e^2+...(lnx-1)/(x-e)= [ 1+(x-e)/e + (x-e)^2/e^2+...- 1] /(x-e)= ((x...