Tan^2a=2tan^2b+1 cos2a+sin^2b=?

问题描述:

Tan^2a=2tan^2b+1 cos2a+sin^2b=?
^2代表平方 也就是两次方
绝对没有错 数学书上就这样写的

由Tan^2a=2tan^2b+1可知:sin^2a/cos^2a=2*sin^2b/cos^2b+2-1即:sin^2a/cos^2a+1=2*sin^2b/cos^2b+2即:1/cos^2a=2/cos^2b即:cos^2b=2*cos^2a所以,cos2a+sin^2b=2*cos^2a-1+sin^2b=cos^2b-1+sin^2b=0