证明:如果b方=ac,则(a+b+c)(a-b+c)(a方-b方+b方)=a四次方+b四次方+c四次方

问题描述:

证明:如果b方=ac,则(a+b+c)(a-b+c)(a方-b方+b方)=a四次方+b四次方+c四次方

(a+b+c)(a-b+c)=(a+c)&sup2 - b&sup2 = a&sup2 + c&sup2 + 2ac - b&sup2 = a&sup2 + b&sup2 + c&sup2 左式=(a&sup2 + b&sup2 + c&sup2)(a&sup2 - b&sup2 + c&sup2)=(a&sup2 + c&sup2)&sup2 - b^4=a^4 + c^4 + 2a&sup...