如图,在△ABC和ADE中,AB=AC,AD=AE,且∠BAC=∠DAE,点E在BC上.过点D作DF∥BC,连接DB. 求证:(1)△ABD≌△ACE; (2)DF=CE.

问题描述:

如图,在△ABC和ADE中,AB=AC,AD=AE,且∠BAC=∠DAE,点E在BC上.过点D作DF∥BC,连接DB.
求证:(1)△ABD≌△ACE;
(2)DF=CE.

(1)证明:∵∠BAC=∠DAE,∴∠BAC-∠BAE=∠DAE-∠BAE,∴∠BAD=∠EAC,在△BAD和△CAE中∵AD=AE∠BAD=∠EACAB=AC,∴△BAD≌△CAE(SAS);(2)证明:∵△BAD≌△CAE,∴∠DBA=∠C,∵AB=AC,∴∠C=∠ABC,∵D...