如图,在四边形ABCD中,AD∥BC,点E是AB上的一个动点,若∠B=60°,AB=BC,且∠DEC=60°,判断AD+AE与BC的关系并证明你的结论.
问题描述:
如图,在四边形ABCD中,AD∥BC,点E是AB上的一个动点,若∠B=60°,AB=BC,且∠DEC=60°,判断AD+AE与BC的关系并证明你的结论.
答
有BC=AD+AE.连接AC,过E作EF∥BC交AC于F点.∵∠B=60°,AB=BC,∴△ABC为等边三角形,∵EF∥BC,∴△AEF为等边三角形.即AE=EF,∠AEF=∠AFE=60°.所以∠CFE=120°. &...