余弦定理数学题,

问题描述:

余弦定理数学题,
在△ABC中,sinA=2sinBcosC,sin²A=sin²B+sin²C.判断△ABC的形状.

sin²A=sin²B+sin²C,a/sinA=b/sinB=c/sinC=2R(a/2R)^2=(b/2R)^2+(c/2R)^2a^2=b^2+c^2,ABC是直角三角形sinA=2sinBcosC=-2sinBcos(A+B)=-2sinB(cosAcosB-sinAsinB)=2(sinB)^2=1sinB=(根号2)/2,B=45°ABC...