在△ABC中,已知角A,B,C的对边分别为a,b,c,且bCosB+cCosC=aCosA,试判断△ABC的形状.
问题描述:
在△ABC中,已知角A,B,C的对边分别为a,b,c,且bCosB+cCosC=aCosA,试判断△ABC的形状.
答
∵bcosB+ccosC=acosA,由正弦定理得:sinBcosB+sinCcosC=sinAcosA,即sin2B+sin2C=2sinAcosA,∴2sin(B+C)cos(B-C)=2sinAcosA.∵A+B+C=π,∴sin(B+C)=sinA.而sinA≠0,∴cos(B-C)=cosA,即cos(B-C)+cos...