(log6^2)^2+(log6^3)*(log6^4)+(log6^3)^2
问题描述:
(log6^2)^2+(log6^3)*(log6^4)+(log6^3)^2
答
(log6^2)^2+(log6^3)*(log6^4)+(log6^3)^2=
=(2log6)^2+(3log6)(4log6)+(3log6)^2=
=4(log6)^2+12(log6)^2+9(log6)^2=
=25(log6)^2
若log是以二为底的对数
那么
(log6^2)^2+(log6^3)*(log6^4)+(log6^3)^2=25(log6)^2 =
=25(1+log3)^2=25(1+2*log3+(log3)^2)=25+50log3+25(log3)^2