高数 迈克劳林展开式 级数 收敛域

问题描述:

高数 迈克劳林展开式 级数 收敛域
求x^4/(1-x^2)的迈克劳林展开式为,收敛域是,
n=2到无穷∑x^2n (-1,1)
为何n从2开始~

∑[n=2,∞](x^2)^n 这是等比数列求和.换元 x^2 = t,级数变为:
∑[n=2,∞] t^n 收敛半径的计算公式:
R = 1 / lim[n->∞] sup (| a[n] |)^(1/n)
这里,系数 a[n] = 1,所以收敛半径为1.且t = 1的时候是发散的.
所以,级数的收敛域为:x^2 x ∈ (-1,1) .
利用等比数列求和公式:
∑[n=2,∞](x^2)^n = x^4 / (1 - x^2).