求:利用二重积分求立体的Ω体积:Ω由曲面z=x^2+2*y^2及z=6-2*x^2-y^2所围的立体;

问题描述:

求:利用二重积分求立体的Ω体积:Ω由曲面z=x^2+2*y^2及z=6-2*x^2-y^2所围的立体;

联立z1=x^2+2y^2及z2=6-2x^2-y^2消去z得x^2+y^2=2(图略.z2在上z1在下)知方体Ω在xoy面投影区域为D:x^2+y^≤2极坐标中0≤θ≤2π,0≤r≤√2那么立体的Ω体积V=∫∫(z2-z1)dxdy=3∫∫(2-x^2-y^2)dxdy=3∫(0,2π)dθ...