证明cscα(cscα-cosβ)+sinα(sinα-sinβ)=2 sin² α-β/2

问题描述:

证明cscα(cscα-cosβ)+sinα(sinα-sinβ)=2 sin² α-β/2

你的表达可能有点问题!是不是想求证
cosα(cosα-cosβ)+sinα(sinα-sinβ)=2{sin[(α-β)/2]}^2
若是这样,则方法如下:
cosα(cosα-cosβ)+sinα(sinα-sinβ)
=(cosα)^2-cosαcosβ+(sinα)^2-sinαsinβ
=[(cosα)^2+(sinα)^2]-(cosαcosβ+sinαsinβ)
=1-cos(α-β)
=1-1+2{sin[(α-β)/2]}^2
=2{sin[(α-β)/2]}^2
注:请你认真核查原题,看不是不哪里抄错了,若原题不是我所猜测的那样,则请你补充说明.