已知函数f(x)=sin2ωx+3sinωxsin(ωx+π2)(ω>0)的最小正周期为π. (1)求ω的值; (2)求函数f(x)在区间[0,2π3]上的取值范围.

问题描述:

已知函数f(x)=sin2ωx+

3
sinωxsin(ωx+
π
2
)(ω>0)的最小正周期为π.
(1)求ω的值;
(2)求函数f(x)在区间[0,
3
]上的取值范围.

(Ⅰ)f(x)=1-cos2ωx2+32sin2ωx=32sin2ωx-12cos2ωx+12=sin(2ωx-π6)+12.∵函数f(x)的最小正周期为π,且ω>0,∴2π2ω=π,解得ω=1.(Ⅱ)由(Ⅰ)得f(x)=sin(2x-π6)+12.∵0≤x≤2π3,∴-π6≤2x-π6...