已知点A,B的坐标分别为(1,0),(2,0).若二次函数y=x2+(a-3)x+3的图象与线段AB只有一个交点,则a的取值范围是_.

问题描述:

已知点A,B的坐标分别为(1,0),(2,0).若二次函数y=x2+(a-3)x+3的图象与线段AB只有一个交点,则a的取值范围是______.

依题意,应分为两种情况讨论,
①当二次函数顶点在x轴下方,
若yx=1<0且yx=2≥0,即

1+(a−3)+3<0
4+2(a−3)+3≥0
,解得此不等式组无解;
若yx=2<0且yx=1≥0,即
1+(a−3)+3≥0
4+2(a−3)+3<0
,解得-1≤a<-
1
2

②当二次函数的顶点在x轴上时,
△=0,即(a-3)2-12=0,解得a=3±2
3

而对称轴为x=-
a−3
2
,可知1≤-
a−3
2
≤2,故a=3-2
3

故答案为:-1≤a<-
1
2
或a=3-2
3