已知等差数列{an}满足a3=6,a4+a6=20 (1)求通项an; (2)设{bn-an}是首项为1,公比为3的等比数列,求数列{bn}的通项公式及其前n项和Tn.
问题描述:
已知等差数列{an}满足a3=6,a4+a6=20
(1)求通项an;
(2)设{bn-an}是首项为1,公比为3的等比数列,求数列{bn}的通项公式及其前n项和Tn.
答
(1)∵等差数列{an}满足a3=6,a4+a6=20,
∴
,
a1+2d=6
a1+3d+a1+5d=20
解得
,
a1=2 d=2
∴an=2n.
(2)∵an=2n,
{bn-an}是首项为1,公比为3的等比数列,
∴bn−2n=3n−1,
∴bn=3n−1+2n,
∴Tn=(1+3+…+3n−1)+2(1+2+…+n)=
+n2+n.
3n−1 2