已知a,b,c为实数,且满足a²+b²+c²=9,求 (a-b)²+(b-c)²+(c-a)²的最大值?

问题描述:

已知a,b,c为实数,且满足a²+b²+c²=9,求 (a-b)²+(b-c)²+(c-a)²的最大值?
注意,当a²=b²=1.5,c²=6,且a=b

因为 (a+b+c)²≥0,当a+b+c=0时,等号成立又,(a+b+c)²=a²+b²+c²+2ab+2bc+2ac≥0,所以 2(ab+bc+ac)≥-(a²+b²+c²)=-9所以 (a-b)²+(b-c)²+(c-a)²=2(a²+b...