m/(x+2)+n/x-3=3x+1/(x+2)(x-3) 则1/mn的值为?
问题描述:
m/(x+2)+n/x-3=3x+1/(x+2)(x-3) 则1/mn的值为?
答
m/(x+2)+n/(x-3)=(3x+1)/(x+2)(x-3)
在方程两边同时乘以因式(x+2)(x-3),得
m(x-3)+n(x+2)=3x+1
即(m+n)x+(2n-3m)=3x+1
所以对应项系数相等得
m+n=3
2n-3m=1
解得m=1,n=2
所以1/(mn)=1/2
希望能够帮助你,有疑问欢迎追问,m(x-3)+n(x+2)=3x+1即(m+n)x+(2n-3m)=3x+1这一步到这一步怎么来的,能告诉我吗m(x-3)+n(x+2)=3x+1mx-3m+nx+2n=3x+1合并同类项(mx+nx)+(2n-3m)=3x+1提公因式x,得(m+n)x+(2n-3m)=3x+1有疑问欢迎继续追问,祝学习进步!