简单的指数方程【这道题咋做?需要详细的解题过程.急求.】
问题描述:
简单的指数方程【这道题咋做?需要详细的解题过程.急求.】
(4^x-6×2^x)+[4^(-x)-6×2^(-x)]+10=0
大家帮帮忙.我不会做.
友情帮助:×为乘号.
正确答案是x1=0,x2=log2 (2-√3),x3=log2 (2+√3)
一楼的貌似连题目也看错了。无语。。。
中括号里面都是-x次方啊。。。。
答
(4^x-6×2^x)+[4^(-x)-6×2^(-x)]+10=0
2^(2x) - 6(2^x)+ 2^(-2x) - 6(2^(-x) + 10 =0
(2^x + 2^(-x))^2 - 6(2^x+2^(-x)) + 8 =0
(2^x + 2^(-x) - 2)(2^x + 2^(-x) - 4 ) =0
2^x + 2^(-x) = 2 or 2^x + 2^(-x) = 4
=> 2^(2x)-2(2^x)+1 = 0 or 2^(2x) - 4(2^x) + 1 =0
=> (2^x-1)^2=0 or 2^x = 2+√3 or 2^x = 2- √3
=> 2^x = 1 or 2^x = 2+√3 or 2^x = 2- √3
=> x=0 or x= log2(2+√3) or x=log2(2-√3)
where log2(x) ( log with base 2 )