设x,y∈R,且xy≠0,则(x2+1/y2)(1/x2+4y2)的最小值为_.
问题描述:
设x,y∈R,且xy≠0,则(x2+
)(1 y2
+4y2)的最小值为______. 1 x2
答
∵x,y∈R,且xy≠0,
∴(x2+
)(1 y2
+4y2)=1+4+1 x2
+ 4x2 y2≥5+21
x2y2
=9
•4x2y2
1
x2y2
当且仅当
= 4x2y2时等号成立,1
x2y2
∴(x2+
)(1 y2
+4y2)的最小值为9.1 x2
故答案为9.