如图,抛物线y=x2+bx+c与y轴交于点C(0,3),与x轴交于A(3,0),B两点(点A在点B的右侧),过C作直线l,与抛物线相交于点D(5,8),与对称轴交于点N,点P(m,n)为直线l上的一个动点,

问题描述:

如图,抛物线y=x2+bx+c与y轴交于点C(0,3),与x轴交于A(3,0),B两点(点A在点B的右侧),过C作直线l,与抛物线相交于点D(5,8),与对称轴交于点N,点P(m,n)为直线l上的一个动点,过P作x轴的垂线交抛物线于点G,设线段PG的长度为d

(1)求该抛物线的函数解析式;
(2)当0<m<5时,请用含m的代数式表示d,求出d的最大值;
(3)是否存在这样的点P,使以M,N,P,G为顶点的四边形是平行四边形?若存在,请求出点P的坐标;若不存在,请说明理由.

(1)∵抛物线y=x2+bx+c过点C(0,3),A(3,0),∴c=39+3b+c=0,解得:b=-4c=3,则抛物线的解析式为:y=x2-4x+3;(2)设直线l的解析式为y=kx+b,∵直线l经过点C(0,3),D(5,8),∴b=35k+b=8,解得:k=1b=3...