在等比数列{an}中,a2·a3·a4=8,a6·a7·a8=64,求a10·a11·a12的值

问题描述:

在等比数列{an}中,a2·a3·a4=8,a6·a7·a8=64,求a10·a11·a12的值

只需利用等比数列中项公式:(an)^2=a(n+m)*a(n-m)就可以得到
a6为a2,a10的等比中项,即a6^2=a2*a10其余同理
那么(a6·a7·a8)就是(a2·a3·a4)和(a10·a11·a12)的等比中项
若LZ还有什么不懂的地方可追问