1/(x-5)-1/(x-6)=1/(x-8)-1/(x-9)

问题描述:

1/(x-5)-1/(x-6)=1/(x-8)-1/(x-9)
分析:若直接去分母,运算量很大很复杂,因本题构成比较特殊,如果方程两边分别通分,则具有相同分子,可以使解方程过程大大简化.
仿照此方法,
(x-4)/(x-5)+(x-8)/(x-9)=(x-7)/(x-8)+(x-5)/(x-6)

(x-4)/(x-5)-1+(x-8)/(x-9)-1=(x-7)/(x-8)-1+(x-5)/(x-6) -11/(x-5)+1/(x-9)=1/(x-6)+1/(x-8)通分(2x-14)/(x²-14x+45)=(2x-14)/(x²-14x+48)(2x-14)[1/(x²-14x+45)-1/(x²-14x+48)]=01/...