已知tanα=xsinβ1−xcosβ,tanβ=ysinα1−ycosα,求证:sinαsinβ=x/y.

问题描述:

已知tanα=

xsinβ
1−xcosβ
,tanβ=
ysinα
1−ycosα
,求证:
sinα
sinβ
=
x
y

证明:∵已知tanα=

sinα
cosα
=
xsinβ
1−xcosβ
,tanβ=
sinβ
cosβ
=
ysinα
1−ycosα

cosα
sinα
1−xcosβ
xsinβ
cosβ
sinβ
1−ycosα
ysinα

两式相减可得
cosα
sinα
-
cosβ
sinβ
=
1
xsinβ
cosβ
sinβ
-(
1
ysinα
cosα
sinα
),
1
ysinα
=
1
xsinβ
,∴xsinβ=ysinα,
sinα
sinβ
=
x
y