在三角形ABC中,abc分别是角A,B,C的对边,已知b2=ac,且a2-c2=ac-bc.求A的大小及bsinB/c的值

问题描述:

在三角形ABC中,abc分别是角A,B,C的对边,已知b2=ac,且a2-c2=ac-bc.求A的大小及bsinB/c的值

因为b^2=ac,所以a^2=ac-bc+c^2=b^2+c^2-bc由余弦定理得a^2=b^2+c^2-2bccosA 得两式右侧相等,最终化简,结果为cosA=0.5,所以角A为60°因为b^2=ac,所以b/c=a/b,所以bsinB/c=asinB/b,由正弦定理,的sinB/b=sinA/a,所以bsi...