已知二次函数f(x)=x2+bx+c(b、c∈R),不论α、β为何实数,恒有f(sinα)≥0,f(2+cosβ)≤0. (1)求证:b+c=-1; (2)求证:c≥3; (3)若函数f(sinα)的最大值为8,求b、c的值.
问题描述:
已知二次函数f(x)=x2+bx+c(b、c∈R),不论α、β为何实数,恒有f(sinα)≥0,f(2+cosβ)≤0.
(1)求证:b+c=-1;
(2)求证:c≥3;
(3)若函数f(sinα)的最大值为8,求b、c的值.
答
(1)证明:∵|sinα|≤1且f(sinα)≥0恒成立,可得f(1)≥0.
又∵1≤2+cosβ≤3且f(2+cosβ)≤0恒成立,可得f(1)≤0,
∴f(1)=0,
∴1+b+c=0,∴b+c=-1.
(2)证明:∵b+c=-1,∴b=-1-c,
∴f(x)=x2-(1+c)x+c=(x-1)(x-c).
又∵1≤2+cosβ≤3且f(2+cosβ)≤0恒成立
∴x-c≤0,即c≥x恒成立.
∴c≥3.
(3)∵f(sinα)=sin2α-(1+c)sinα+c=(sinα-
)2+c-(1+c 2
)2,1+c 2
∵
≥21+c 2
∴当sinα=-1时,f(sinα)的最大值为1-b+c.
由1-b+c=8与b+c=-1联立,
可得b=-4,c=3.
即b=-4,c=3.