若p:ψ=π/2+kπ,k∈Z,q:f(x)=sin(ωx+ψ)(ω≠0)是偶函数,则p是q的什么条件?

问题描述:

若p:ψ=π/2+kπ,k∈Z,q:f(x)=sin(ωx+ψ)(ω≠0)是偶函数,则p是q的什么条件?

解由当P:ψ=π/2+kπ,k∈Z时,f(x)=sin(ωx+ψ)=sin(ωx+π/2+kπ)=cos(ωx+kπ)=±cosωx故此时f(x)是偶函数即p可以推出q又由q:f(x)=sin(ωx+ψ)(ω≠0)是偶函数,则f(-x)=f(x)即sin(-ωx+ψ)=...