若x^2+x=1 3x^2+3x 3x^2+3x-5 若a+b/a-b=3 (a+b)/(a-b)-[4(a-b)]/(a+b) 若x+2y^2+5=7 3x+6y^2+4

问题描述:

若x^2+x=1 3x^2+3x 3x^2+3x-5 若a+b/a-b=3 (a+b)/(a-b)-[4(a-b)]/(a+b) 若x+2y^2+5=7 3x+6y^2+4
若A^2+2b=3 5a^2+10b=( ) -a^2-2b=( ) -3a^2-6b=( ) 若b/a=3 4b/3a=( )a/6b=( )

5a^2+10b=5(A^2+2b)=5x3=15
-a^2-2b=-(A^2+2b)=-3
-3a^2-6b=-3(A^2+2b)=-3x3=-9
4b/3a=(4/3)x(b/a)=4x3/3=4
a/6b=(1/6)x(1/(b/a))=(1/6)x(1/3)=1/18