如何证明:1平方+2平方+3平方+……+n平方=n(n+1)(2n+1)/6
问题描述:
如何证明:1平方+2平方+3平方+……+n平方=n(n+1)(2n+1)/6
请给出详细证明!
(另外,请不要用 数学归纳法和待定系数法来求证)
因为我想知道人们最初是怎么把这个求和公式的结果推导出来的.
答
1^2+2^2+3^2+……+n^2=(1^2+1)+(2^2+2)+(3^2+3)+……+(n^2+n)-n(n+1)/2=2[(2*1)/2+(3*2)/2+(4*3)/2+……+n*(n+1)/2]-n(n+1)/2=2(C22+C32+C42+……+C(n+1)2)-n(n+1)/2,(C22表式C2选2,C32表式C3选2……)=2(C33+C32+C42...