数列An的前n项和为Sn,A1=1,且A(n+1)为下标=2Sn+1(n∈N)
问题描述:
数列An的前n项和为Sn,A1=1,且A(n+1)为下标=2Sn+1(n∈N)
1.An的通项公式
2.若bn=nAn,求{bn}的前n项和Tn
答
a(n+1)=2Sn+1an=2S(n-1)+1a(n+1)-an=2[Sn-S(n-1)]=2ana(n+1)=3anan=3^(n-1){an}是以1为首项,公比为3的等比数列.bn=nAnTn=b1+b2+…+bnTn=1*1+2*3^1+3*3^2+…+n3^(n-1)3Tn=3(1*1+2*3^1+…+n3^(n-1))2Tn=-1-3^1-1*3^2-...