已知等差数列{an}中a2=8,S10=185. (1)求数列{an}的通项公式an; (2)若从数列{an}中依次取出第2,4,8,…,2n,…项,按原来的顺序排成一个新数列{bn},试求{bn}的前n项和An.

问题描述:

已知等差数列{an}中a2=8,S10=185.
(1)求数列{an}的通项公式an
(2)若从数列{an}中依次取出第2,4,8,…,2n,…项,按原来的顺序排成一个新数列{bn},试求{bn}的前n项和An

(1)设{an}的首项为a1,公差为d,

a1+d=8
10(2a1+9d)
2
=185
a1=5
d=3

∴an=5+3(n-1),即an=3n+2
(2)设b1=a2,b2=a4,b3=a8,bn=a2n=3×2n+2
∴An=(3×2+2)+(3×22+2)+…+(3×2n+2)=3×(2+22+…+2n)+2n=3×
2(2n−1)
2−1
+2n=6×2n-6+2n