求不定积分∫e^〔(x)^2〕dx=

问题描述:

求不定积分∫e^〔(x)^2〕dx=

∫e^〔(x)^2〕dx
= x*e^(x^2) - ∫xde^(x^2)
=x*e^(x^2) - ∫2*(x^2)*e^(x^2)dx
=x*e^(x^2) - ∫(x^2)*e^(x^2)d(x^2)
=x*e^(x^2) -(x^4)*e^(x^2) +e^(x^2)