为什么当弹簧的质量不可忽略时,振子的有效质量为振动物体的质量与弹簧有效质量的和

问题描述:

为什么当弹簧的质量不可忽略时,振子的有效质量为振动物体的质量与弹簧有效质量的和
弹簧振子的简谐运动方程

图4-1弹簧振子的简谐运动
本实验中所用的是倔强系数分别为k1和k2的弹簧,k1和k2分别由焦利氏秤测得.k1和k2联结在一个质量为M的物体上,它们在光滑的水平气垫导轨上作简谐振动,弹簧的另外两端是固定在气垫导轨上.记M的平衡位置为坐标原点,该点x = 0.如果忽略阻尼和弹簧质量,则当M距平衡位置为x时,只受弹性恢复力k1x和k2x的作用,根据牛顿第二定律,其运动方程为:
(4-2)
方程的解为
(4-3)
其中 是振动系统的固有角频率,A是振幅,0是初位相.0由系统本身决定,也称固有频率,A和  0 由初始条件决定.系统的固有周期(4-4)
本实验通过改变M测出相应的T,用以考察T与M的关系.
3、弹簧质量的影响
当弹簧的质量不可忽略时,振子的有效质量为振动物体的质量与弹簧有效质量的和,振动系统的角频率可记作
(4-5)m0为弹簧的有效质量,在数值上等于弹簧质量的三分之一.
为什么?~~~~~
跪求~~~物理达人来吧~~~~~

1.没有考虑弹簧质量时,动力学方程为

Mx"=-k1x-k2x,

方程解为x=Asin(wx+x0)

w=根号下((k2+k1)/M),T=2pi/w=2pi根号下(M/(k2+k1)),

k1,k2已定,T和M的理论关系为上式.

2.若考虑弹簧质量,先考虑一端弹簧,设*端速度为V,弹簧原长L,则距固定端x处速度V'为xV/L,原因是,在假设弹簧各处等长度伸长,则第n小段的伸长dx是第一小段伸长的n倍,见附图.

将弹簧的动能用积分积出来,利用能量守恒等式,两边对时间求导可到处动力学方程,过程见附图.求出一个弹簧在振动方程中的有效质量是弹簧质量的1/3.

另一个弹簧同样处理可得相同结论.本质上,就是在能量守恒方程中加入两个弹簧的动能项.

所以总的动力学方程为:

(M+1/3*m1+1/3*m2)x"+(k1+k2)x=0

w=2pi根号下((k2+k1)/(M+1/3*m1+1/3*m2)),T=2pi/w=2pi根号下((M+1/3*m1+1/3*m2)/(k2+k1)). 

m0=1/3*m1+1/3*m2,m1,m2为两个弹簧的质量.