如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=6,BC=8,AB=33,点M是BC的中点.点P从点M出发沿MB以每秒1个单位长的速度向点B匀速运动,到达点B后立刻以原速度沿BM返回;点Q从点M出发以每秒1
问题描述:
如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=6,BC=8,AB=3
3 |
(1)设PQ的长为y,在点P从点M向点B运动的过程中,写出y与t之间的函数关系式(不必写t的取值范围);
(2)当BP=1时,求△EPQ与梯形ABCD重叠部分的面积;
(3)随着时间t的变化,线段AD会有一部分被△EPQ覆盖,被覆盖线段的长度在某个时刻会达到最大值,请回答:该最大值能否持续一个时段?若能,直接写出t的取值范围;若不能,请说明理由.
答
(1)y=MP+MQ=2t;(2)当BP=1时,有两种情形:①如图1,若点P从点M向点B运动,有MB=12BC=4,MP=MQ=3,∴PQ=6.连接EM,∵△EPQ是等边三角形,∴EM⊥PQ.∴EM=33.∵AB=33,∴点E在AD上.∴△EPQ与梯形ABCD重叠部分...