求积分∫[1/(1+cosx)]dx=?

问题描述:

求积分∫[1/(1+cosx)]dx=?

∫[1/(1+cosx)]dx=∫[1/2(cosx/2)^2]dx=1/2∫(secx/2)^2dx=∫(secx/2)^2dx/2=(tanx/2)^2+C