求积分∫[1/(1+cosx)]dx=?
问题描述:
求积分∫[1/(1+cosx)]dx=?
答
∫[1/(1+cosx)]dx=∫[1/2(cosx/2)^2]dx=1/2∫(secx/2)^2dx=∫(secx/2)^2dx/2=(tanx/2)^2+C
求积分∫[1/(1+cosx)]dx=?
∫[1/(1+cosx)]dx=∫[1/2(cosx/2)^2]dx=1/2∫(secx/2)^2dx=∫(secx/2)^2dx/2=(tanx/2)^2+C