(1+1/3+1/5+1/10+1/15+1/30)/(1/2+1/4+1/6+1/12+1/20+1/60)=?
问题描述:
(1+1/3+1/5+1/10+1/15+1/30)/(1/2+1/4+1/6+1/12+1/20+1/60)=?
简算
答
(1+1/3+1/5+1/10+1/15+1/30)/(1/2+1/4+1/6+1/12+1/20+1/60)=(30/30+10/30+6/30+3/30+2/30+1/30)/(30/60+15/60+10/60+5/60+3/60+1/60)=(52/30)/(64/60)=(26/15)/(16/15)=26/15×15/16=13/8