函数的y=x平方的图像与直线y=1/x相交于点A,求过点A的两曲线的切线与X轴围成三角形的面积.
问题描述:
函数的y=x平方的图像与直线y=1/x相交于点A,求过点A的两曲线的切线与X轴围成三角形的面积.
答
{y=x^2,
{y=1/x.
解得x=y=1.
∴A(1,1).
记f(x)=x^2,g(x)=1/x.
则f'(x)=2x,f'(1)=2.g'(x)=-1/x^2,g'(1)=-1.
抛物线y=x^2在点A 的切线是y=2x-1,交x轴于点B(1/2,0);
双曲线y=1/x在点A 的切线是y=-x+2,交x轴于点C(2,0).
|BC|=3/2.
∴两切线与X轴围成三角形ABC的面积=3/4.