如图,二次函数y=-x²+ax+b的图像与x轴交与A(-1/2,0)、B(2,0)两点,且与y轴交与点C;
问题描述:
如图,二次函数y=-x²+ax+b的图像与x轴交与A(-1/2,0)、B(2,0)两点,且与y轴交与点C;
在此抛物线上是否存在点P,使得以A、C、B、P四点为顶点的四边形是直角梯形?如存在,求出P点坐标;若不存在,说明理由
答
这里画不了图,只好表述一下过程.
由题意知,该抛物线开口是向下的,
故C点在y轴的正半轴上.
由A、C、B、P四点要构成直角梯形,
那么显然ABC三点为定点,而P为动点.
按照数学思维中“先易后难,一步一步来”的原则,显然应该先考察三个定点A、B、C.
若以AB为底边,在图像上看,显然只能构成1个等腰梯形,不合题目要求,予以排除.
若以AC为底边,过B点作AC的平行线,显然,只要满足(1)角C为直角,(2)这条平行线与抛物线在第三象限有交点,则这个交点就是P点.如果你对抛物线的变化趋势有清晰的认识,直接就可判断这个P点必然是存在的.
若以BC为底边,其情况如上一种完全类似,也必然存在着另一个P点满足直角梯形的要求.
在Rt△ABC中,CO为AB边上的高,
∴|CO|^2=|AO|*|BO|=1/2*2=1
∴C点的坐标为(0,1)
接下来已知三点求出抛物线的方程;
再分别求出两条平行线的方程;
再分别联立成方程组,求出交点坐标.
这些都不难,由你自己完成吧.
最后的答案是:抛物线方程y=y=-x²+(3/2)x+1
P点坐标为(-5/2,-9),(5/2,-3/2).