如图,P是等边△ABC内一点,且PA=6,PC=8,PB=10,D是△ABC外一点,且△ADC≌△APB,求∠APC的度数.

问题描述:

如图,P是等边△ABC内一点,且PA=6,PC=8,PB=10,D是△ABC外一点,且△ADC≌△APB,求∠APC的度数.

如图,

连接DP,
∵△ABC是正三角形,
∴∠BAC=60°,
∵△ADC≌△APB,
∴∠DAC=∠PAB,DA=PA,DC=PB,
∵∠PAC+∠BAP=60°,
∴∠PAC+∠CAD=60°,
∴△DAP是正三角形,
∴DP=6,∠DPA=60°;
在△PDC中.
PC=8,DP=6,DC=10,
∵82+62=102
∴∠DPC=90°,
∴∠APC=∠DPA+∠DPC=60°+90°=150°.