已知:a+b+c,b+c-a,c+a-b,a+b-c组成公比为q的等比数列,求证:q3+q2+q=1.

问题描述:

已知:a+b+c,b+c-a,c+a-b,a+b-c组成公比为q的等比数列,求证:q3+q2+q=1.

证明:设x=a+b+c,
则b+c-a=xq,c+a-b=xq2,a+b-c=xq3
∴xq+xq2+xq3=x(x≠0),
∴q3+q2+q=1.