lim(x→0)1/x∫[x,0](1+t^2)*e^(t^2-x^2)dt

问题描述:

lim(x→0)1/x∫[x,0](1+t^2)*e^(t^2-x^2)dt

原极限
=lim(x→0) ∫[x,0](1+t^2)*e^t^2 dt / [x*e^(x^2)]
=lim(x→0) ∫[x,0](1+t^2)*e^t^2 dt / x 分子分母都趋于0,使用洛必达法则同时求导
=lim(x→0) (1+x^2)*e^x^2 代入x=0
=1