在三角形ABC中 ,4Sin^2(B+C)/2-Cos2A=7/2 求角A的度数
问题描述:
在三角形ABC中 ,4Sin^2(B+C)/2-Cos2A=7/2 求角A的度数
答
(1)根据题意有:
4[sin(B+C)/2]^2-cos2A
=4sin[(180-A)/2]^2-cos2A
=4[sin(90-A/2)]^2-cos2A
=4(cosA/2)^2-cos2A
=4[(1+cosA)/2]-cos2A
=2+2cosA-2(cosA)^2+1
=-2(cosA)^2+2cosA+3=7/2
即4(cosA)^2-4cosA+1=0
(2cosA-1)^2=0
2cosA=1
cosA=1/2
所以,A=60°
(2)sinB=√[1-(cosB)^2]=4/5
根据正弦定理:a/sinA=b/sinB
即√3/sin60°=b/(4/5)
解得b=8/5
sinC=sin(A+B)=sinAcosB+cosAsinB=√3/2*3/5+1/2*4/5=(4+3√3)/10
那么S△ABC=1/2absinC=1/2*√3*8/5*(4+3√3)/10=(8√3+18)/25