如图,在等腰梯形ABCD中,AD∥BC,∠B=60°,AD=AB.点E,F分别在AD,AB上,AE=BF,DF与CE相交于P,则∠DPE=_度.

问题描述:

如图,在等腰梯形ABCD中,AD∥BC,∠B=60°,AD=AB.点E,F分别在AD,AB上,AE=BF,DF与CE相交于P,则∠DPE=______度.

∵四边形ABCD为等腰梯形,
∴AB=DC,∠A=∠ADC,
又∵∠B=60°,
∴∠A=∠ADC=120°,
而AD=AB,AE=BF,
∴AF=DE,AD=DC,
∴△ADF≌△DCE,
∴∠ADF=∠DCE,
而∠DCE+∠DEC=60°,
∴∠ADF+∠DEC=60°,
∴∠DPE=120°.
故答案为120°.