三角形ABC中a^2+b^2=2c^2求(sin^2A+sin^2B)/Sin^2C

问题描述:

三角形ABC中a^2+b^2=2c^2求(sin^2A+sin^2B)/Sin^2C

正弦定理
(sin^2A+sin^2B)/Sin^2C = (a^2+b^2)/c^2 = 2c^2/c^2 = 2