已知:如图,在四边形ABCD中,AB∥CD,AE⊥BD,CF⊥BD,垂足分别为E、F,且AE=CF,求证:AB=CD.

问题描述:

已知:如图,在四边形ABCD中,AB∥CD,AE⊥BD,CF⊥BD,垂足分别为E、F,且AE=CF,求证:AB=CD.

证明:∵AB∥CD,
∴∠ABD=∠BDC,
∵AE⊥BD,CF⊥BD,
∴∠AEB=∠CFD=90°,
在△ABE和△CDF中,

∠AEB=∠CFD=90°
∠ABD=∠BDC
AE=CF

∴△ABE≌△CDF(AAS),
∴AB=CD.