1/(19×21)+1/(21×23)+1/(23×25)+……+1/(97×99)

问题描述:

1/(19×21)+1/(21×23)+1/(23×25)+……+1/(97×99)
原式=1/2×(1/19-1/21)+1/2×(1/21-1/23)+1/2×(1/23-1/25)+……1/2×(1/97-1/99)
=1/2×(1/19-1/21+1/21-1/23+1/23-1/25+1/25-1/27+……+1/95-1/97+1/97-1/99)
=1/2(1/19-1/99)
=40/1881
我想知道一下原式的第一步和第二步怎么简化的呢?

99-97=97-95=...21-19=2
1/(19×21)=1/(21-19)×(1/19-1/21)
任意1/(n×m)=1/(n-m)×(1/m-1/n)
易证
你不知道这种东西也没任何关系
1/(19×21)可以写成1/a×(1/19-1/21)是显然的
看题目可以发现必然要拆做两项差然后相消
这是这类题的思路
简单计算即可发现A为定值 故有所解