sin0=0 sin(1/6π)=1/2sin(1/3π)=√3/2sin(1/2π)=1sin(2/3π)=√3/2sin(5/6π)=1/2sin(π)=0sin(-π)=0sin(-5/6π)=-1/2sin(-2/3π)=-√3/2sin(-1/2π)=-1sin(-1/3π)=-√3/2sin(-1/6π)=-1/2sin(7/6π)=-1/2sin(4/3π)=-√3/2sin(5/3π)=-√3/2sin(11/6π)=-1/2sin(2π)=0sin(-2π)=0sin(-11/6π)=1/2sin(-5/3π)=√3/2sin(-4/3π)=√3/2sin(-7/6π)=1/2cos0=1 cos(1/6π)=√3/2cos(1/3π)=1/2cos(1/2π)=0cos(2/3π)=-1/2cos(5/6π)=-√3/2cos(π)=-1cos(-π)=-1cos(-5/6π)=√3/2cos(-2/3π)=-1/2cos(-1/2π)=0cos(-1/3π)=1/2cos(-

问题描述:

sin0=0
sin(1/6π)=1/2
sin(1/3π)=√3/2
sin(1/2π)=1
sin(2/3π)=√3/2
sin(5/6π)=1/2
sin(π)=0
sin(-π)=0
sin(-5/6π)=-1/2
sin(-2/3π)=-√3/2
sin(-1/2π)=-1
sin(-1/3π)=-√3/2
sin(-1/6π)=-1/2
sin(7/6π)=-1/2
sin(4/3π)=-√3/2
sin(5/3π)=-√3/2
sin(11/6π)=-1/2
sin(2π)=0
sin(-2π)=0
sin(-11/6π)=1/2
sin(-5/3π)=√3/2
sin(-4/3π)=√3/2
sin(-7/6π)=1/2
cos0=1
cos(1/6π)=√3/2
cos(1/3π)=1/2
cos(1/2π)=0
cos(2/3π)=-1/2
cos(5/6π)=-√3/2
cos(π)=-1
cos(-π)=-1
cos(-5/6π)=√3/2
cos(-2/3π)=-1/2
cos(-1/2π)=0
cos(-1/3π)=1/2
cos(-1/6π)=√3/2
cos(7/6π)=-√3/2
cos(4/3π)=-1/2
cos(5/3π)=1/2
cos(11/6π)=√3/2
cos(2π)=1
cos(-2π)=1
cos(-11/6π)=-√3/2
cos(-5/3π)=√3/2
cos(-4/3π)=-1/2
cos(-7/6π)=-√3/2
tan0=0
tan(1/6π)=√3/3
tan(1/3π)=√3
tan(2/3π)=-√3
tan(5/6π)=-√3/3
tan(π)=0
tan(-π)=0
tan(-5/6π)=√3/3
tan(-2/3π)=√3
tan(-1/3π)=-√3
tan(-1/6π)=-√3/3
tan(7/6π)=-√3/3
tan(4/3π)=-√3
tan(5/3π)=-√3
tan(11/6π)=-√3/3
tan(2π)=0
tan(-2π)=0
tan(-11/6π)=√3/3
tan(-5/3π)=√3
tan(-4/3π)=√3
tan(-7/6π)=√3/3
这是我算的弧度制常用三角函数值,各位帮忙看看有没有算错的,
老师让背的,我也没辙,就先痛苦地算了一遍,还不保证对。..........

老师有让背吗?这臭孩子,自己偷着学!

看了下规律是没错
你画个曲线不就知道了,为什么要列出来查表