化简:a2(a−b)(a−c)+b2(b−c)(b−a)+c2(c−a)(c−b)=_

问题描述:

化简:

a2
(a−b)(a−c)
+
b2
(b−c)(b−a)
+
c2
(c−a)(c−b)
=______

原式=

1
a−b
[
a2
a−c
b2
b−c
]+
c2
(c−a)(c−b)

=
a−b
(a−b)(ab−ac−bc)
(a−c)(b−c)
+
c2
(c−a)(c−b)

=
ab−ac−bc
(a−c)(b−c)
+
c2
(c−a)(c−b)

=
ab−ac−bc+c2
(a−c)(b−c)

=1.
故答案为:1.