矩阵可对角化的条件(3个)

问题描述:

矩阵可对角化的条件(3个)

一、矩阵A为n阶方阵
二、充要条件是有n个线性无关的特征向量
三、充分条件n个特征值互不相等
也就是由特征值求出n个特征向量,组成变换矩阵P,P=(a1,a2,.an),那么:P逆AP=主对角线为特征值的对角阵