设cosα=-√5/5 π
问题描述:
设cosα=-√5/5 π
答
sinα=-2根号5/5
cosα=-根号5/5
tanβ=1/3
sinβ=根号10/10
cosβ=3根号10/10
sin(α-β)=sinαcosβ-cosαsinβ
=-6根号50/50+根号50/50
=-5根号50/50
=-根号2/2
α-β=5π/4
答
cosα=-√5/5
π<α<3π/2
∴sinα=-2√5/5
tanα=2
tan(α-β)=(tanα-tanβ)/(1+tanαtanβ)
=[2-(1/3)]/[1+2*(1/3)]
=(5/3)/(5/3)
=1
0